Linkedin

Total de visualizações de página

Mostrando postagens com marcador rfid. Mostrar todas as postagens
Mostrando postagens com marcador rfid. Mostrar todas as postagens

sábado, 13 de abril de 2013

FAQ RFID

O que é identificação automática? 
Identificação automática, ou auto ID para abreviar, é o termo amplo dado a um conjunto de tecnologias que são usadas para ajudar máquinas a identificar objetos. Identificação automática é muitas vezes associada a captura automática de dados. Ou seja, as empresas querem identificar itens, capturar informações sobre eles e, de alguma forma, obter os dados em um computador sem ter empregados digitando-os. O objetivo da maioria dos sistemas de auto-identificação é aumentar a eficiência, reduzir os erros de entrada de dados e liberar pessoal para executar funções de maior valor agregado, tais como o fornecimento de serviço ao cliente. Há uma série de tecnologias que estão sob o escopo da auto-identificação. Estes incluem os códigos de barras, cartões inteligentes, reconhecimento de voz, algumas tecnologias biométricas (leitores de retina, por exemplo), reconhecimento óptico de caracteres (OCR) e identificação por radiofrequência (RFID). 

O que é RFID? 
Identificação por radiofrequência, ou RFID, é um termo genérico para tecnologias que usam ondas de rádio para identificar automaticamente pessoas ou objetos. Existem vários métodos de identificação, mas o mais comum é armazenar um número serial que identifica uma pessoa ou objeto e, talvez, outras informações, em um microchip que está ligado a uma antena (o chip e a antena juntos são chamados de um transponder RFID ou uma tag RFID). A antena permite que o chip transmita a informação de identificação a um leitor. O leitor converte as ondas de rádio refletidas da tag RFID em informações digitais que depois podem ser repassadas a computadores que podem fazer uso delas. 

RFID é melhor do que usar os códigos de barras? 
RFID não é necessariamente "melhor" do que os códigos de barras. As duas são tecnologias diferentes e têm diferentes aplicações, que às vezes se sobrepõem. A grande diferença entre as duas é que códigos de barras é uma tecnologia de linha de visão. Isto é, um leitor tem que "ver" o código de barras para lê-lo, o que significa que as pessoas normalmente têm de orientar o código de barras em direção a um leitor para que ele seja lido. Identificação por radiofrequência, por outro lado, não requer linha de visão. Tags RFID podem ser lidas desde que estejam dentro do alcance de um leitor. Códigos de barras têm outras deficiências também. Se um rótulo está rasgado, sujo ou caiu, não há nenhuma maneira para digitalizar o item e códigos de barras padrão identificam apenas o fabricante e o produto e não o item individual. O código de barras em uma caixa de leite é o mesmo que todos os outros, tornando impossível identificar qual deles pode passar a data de validade primeiro. 

O RFID vai substituir os códigos de barras? 
É muito improvável. Códigos de barras são baratos e eficazes para determinadas tarefas, mas RFID e os códigos de barra coexistirão por muitos anos. 

O que tem impedido o RFID de decolar até agora? 
Existem normas bem desenvolvidas para sistemas RFID de baixa e alta frequência e essas tecnologias são amplamente utilizadas. Por exemplo, tags de baixa frequência (LF) são usadas para rastrear gado em todo o mundo. Alta frequência (HF) é usado em sistemas de controle de acesso a edifícios, aplicações de compra de bilhetes, e imobilizadores de automóveis. Frequencia ultra alta (UHF) é relativamente novo. Os primeiros produtos UHF não chegaram ao mercado até 2003, e a primeira norma ISO para UHF não foi introduzida até 2005. Outro problema com UHF tem sido o desempenho. As primeiras tags não foram sempre lidas confiavelmente em torno de água e metal, mas a tecnologia melhorou muito ao longo dos últimos anos. E, finalmente, não houveram soluções de software que se aproveitassem de dados RFID para resolver problemas de negócios em indústrias específicas. Isto também está começando a mudar, com mais soluções de software sendo introduzidas a cada ano. 

De que forma as empresas utilizam RFID hoje? 
Milhares de empresas ao redor do mundo utilizam RFID hoje para melhorar a eficiência interna. Club Car, fabricante de carrinhos de golfe, usa RFID para melhorar a eficiência de sua linha de produção. Paramount Farms - um dos maiores fornecedores do mundo de pistaches usa RFID para gerenciar sua colheita de forma mais eficiente. NYK Logistics usa RFID para melhorar a taxa de transferência de recipientes em seu movimentado centro de distribuição em Long Beach, Califórnia. E muitas outras empresas estão usando RFID para uma ampla variedade de aplicações. 

Quais são algumas das aplicações mais comuns para o RFID? 
RFID é usado para tudo, desde rastreamento de vacas e animais de estimação a acionamento de equipamentos em poços de petróleo. Pode parecer banal, mas as aplicações são limitadas apenas pela imaginação das pessoas. As aplicações mais comuns são os sistemas de pagamento (Mobil Speedpass e sistemas de cobrança de pedágio, por exemplo), controle de acesso e controle de ativos. Cada vez mais, varejo, vestuário, aeroespacial, defesa, indústria, bens de consumo embalados e empresas farmacêuticas estão procurando usar RFID para rastrear mercadorias no interior de suas cadeias de fornecimento. Prestadores de cuidados de saúde, produtores de energia e empresas de construção estão usando sistemas RFID ativos para acompanhar grandes equipamentos, ferramentas e veículos. 

Como funciona um sistema RFID? 
Um sistema RFID é composto por um leitor (às vezes chamado de um interrogador) e um transponder (ou tag), que geralmente tem um microchip com uma antena ligada a ele. Existem diferentes tipos de sistemas RFID, mas geralmente o leitor envia ondas eletromagnéticas com um sinal que a tag foi concebida para responder. Tags passivas não possuem fonte de alimentação. Atraem o poder do campo criado pelo leitor e usam para alimentar os circuitos do microchip. O chip então modula as ondas que a tag envia de volta para o leitor, que converte as ondas de novo em dados digitais. Tags ativas têm uma fonte de energia e transmitem seus sinais. Sistemas de localização em tempo real não respondem aos sinais do leitor, mas transmitem em intervalos definidos. Leitores captam esses sinais e um software é usado para calcular a localização da tag. 

Qual é a diferença entre frequências baixas e altas, e ultra-altas? 
Assim como seu rádio sintoniza diferentes frequências para ouvir diferentes canais, tags e leitores RFID têm que ser ajustados para a mesma frequência para se comunicarem. Sistemas RFID utilizam muitas frequências diferentes, mas geralmente as mais comuns são de baixa frequência (cerca de 125 KHz), de alta frequência (13,56 MHz) e frequência ultra-alta ou UHF (860-960 MHz). Microondas (2,45 GHz) também são usadas em algumas aplicações. Ondas de rádio se comportam diferentemente em frequências diferentes, então você tem que escolher a frequência correta para a aplicação certa. 

Como eu sei qual frequência é a correta para a minha aplicação? 
Frequências diferentes têm características diferentes que as tornam mais úteis para diferentes aplicações. Por exemplo, tags de baixa frequência usam menos energia e são mais capazes de penetrar em substâncias não-metálicas. Eles são ideais para a digitalização de objetos com alto conteúdo de água, como frutas, mas o seu alcance de leitura é limitada a menos de três pés (um metro). Tags de alta frequência funcionam melhor em objetos feitos de metal e podem trabalhar ao redor de bens com alto teor de água. Elas têm um alcance de leitura máxima de cerca de três pés (1 metro). UHF normalmente oferecem maior alcance e pode transferir dados mais rapidamente do que as baixa e alta frequências. Mas elas usam mais energia e são menos propensas a passar através de materiais. E porque elas tendem a ser mais "dirigidas", elas exigem um caminho desobstruído entre a tag e o leitor. Tags UHF podem ser melhores para a digitalização de caixotes de mercadorias que passam através de uma porta da doca em um armazém. É melhor trabalhar com um experiente consultor, integrador ou fornecedor que pode ajudar você a escolher a frequência correta para sua aplicação. 

Todos os países usam as mesmas frequências? 
Países diferentes têm atribuído diferentes partes do espectro de radiofrequências para RFID, logo nenhuma tecnologia satisfaz todos os requisitos dos mercados existentes e potenciais. A indústria tem trabalhado diligentemente para padronizar três bandas principais RF: baixa frequência (LF), 125-134 kHz; alta frequência (HF), 13,56 MHz, e ultra frequência (UHF), 860-960 MHz. A maioria dos países têm atribuído as áreas do espectro de 125 ou 134 kHz para os sistemas de baixa frequência, e 13,56 MHz é usado em todo o mundo para sistemas de alta frequência (com algumas exceções), mas os sistemas UHF existem apenas meados da década de 1990, e os países não chegaram a um acordo sobre uma única área do espectro UHF para RFID. As larguras de banda UHF na União Europeia estão entre 865-868 MHz, com os interrogadores capazes de transmitir à potência máxima (2 watts ERP) no centro dessa largura de banda (865,6-867,6 MHz). A largura de banda RFID UHF na América do Norte está entre 902-928 MHz, com os leitores capazes de transmitir à potência máxima (1 watt ERP) para a maior parte da largura de banda. A Austrália tem atribuído a faixa de 920-926 MHz para a tecnologia RFID UHF. E canais de transmissão europeus são restritos a um máximo de 200 kHz de largura de banda, contra 500 kHz na América do Norte. A China aprovou a largura de banda de 840,25-844,75 MHz e 920,25-924,75 MHz de UHF para tags e interrogadores utilizados naquele país. Até recentemente, o Japão não permitia qualquer espectro UHF para RFID, mas está pensando em abrir a área MHz 960. Muitos outros dispositivos utilizam o espectro de UHF, por isso vai levar anos para todos os governos chegarem a um acordo sobre uma banda de UHF única para RFID. 

Eu já ouvi que RFID pode ser usado com sensores. Isso é verdade? 
Sim. Algumas empresas estão combinando tags RFID com sensores que detectam e gravam o movimento, temperatura e até mesmo radiação. A tecnologia também pode ser utilizada no setor de saúde. Por exemplo, o Hospital Universitário de Ghent, na Bélgica, tem implementado um sistema que detecta quando um paciente está tendo distúrbios cardíacos, e envia a profissionais de saúde um alerta indicando a localização do paciente. Sistemas ativos podem ser combinados com acelerômetros para detectar movimento, temperatura, umidade e outros sensores. 

Quanta informação uma tag RFID pode armazenar? 
Depende do vendedor, da aplicação e do tipo de tag, mas normalmente uma tag não carrega mais de 2 kilobytes (KB) de dados, o suficiente para armazenar algumas informações básicas sobre o item ao qual está ligado. Simples tags de "placas" contêm apenas um número de série de 96 bits ou 128 bits. As tags simples são mais baratas para a fabricação e são mais úteis para aplicações onde a tag será eliminada com a embalagem do produto. A indústria aeroespacial deseja armazenar históricos de peças em tag de alta memória, o que levou à introdução de tags passivas UHF que armazenam 4KB ou 8KB de dados. 

Qual é a diferença entre as tags RFID read-only e read-write? 
Microchips em tags RFID podem ser read-write, read-only, ou "write once, read many" (WORM). Com chips read-write, você pode adicionar informações à tag ou sobrescrever as informações existentes quando a tag está dentro do alcance de um leitor. Tags read-write geralmente têm um número de série que não pode ser sobrescrito. Blocos de dados adicionais podem ser usados para armazenar informações adicionais sobre os itens aos quais a tag está ligada (estas geralmente podem ser bloqueadas para impedir a substituição de dados). Microchips read-only têm as informações armazenadas neles durante o processo de fabricação. As informações nesses chips não podem ser alterados. Tags WORM podem ter um número de série escrito neles uma vez e essa informação não pode ser substituída mais tarde. 

Qual é a diferença entre as tags passivas e ativas? 
Tags RFID ativas têm um transmissor e sua própria fonte de energia (tipicamente uma bateria). A fonte de alimentação é usada para executar os circuitos do microchip e para transmitir um sinal a um leitor (a maneira como um telefone celular transmite sinais para uma estação). Tags passivas não possuem bateria. Em vez disso, usam a energia do leitor, que envia ondas eletromagnéticas que induzem uma corrente na antena da tag. Tags semi-passivas usam uma bateria para executar os circuitos do chip, mas se comunicam usando a alimentação do leitor. Tags ativas e semi-passivas são úteis para monitorar bens de elevado valor que precisam ser digitalizados a longo alcance, como vagões ferroviários em uma trilha, mas elas custam mais que as tags passivas, o que significa que não podem ser usadas em itens de baixo custo. (Existem empresas desenvolvendo tecnologia que poderia tornar as tags ativas muito menos dispendiosas do que são hoje.) 

Qual é o alcance de leitura de uma tag RFID típico? 
Não há existe algo como uma "típica" tag RFID, e o alcance de leitura depende se a tag é ativa ou passiva. Tags ativas transmitem um sinal, para que elas tenham um alcance muito maior - 300 pés ou mais - do que as tags passivas. O alcance de leitura de etiquetas passivas depende de muitos fatores: a frequência de operação, o poder do leitor, a interferência de outros dispositivos de Rádio Frequência e assim por diante. Em geral, tags de baixa frequência e alta frequência são lidas a partir de três pés (um metro) e tags UHF são lidas de 10 a 20 pés. Leitores com antenas em fase podem aumentar o alcance de leitura de tags passivas até 60 metros ou mais. 

O que é colisão de tags? 
Colisão de tags ocorre quando mais de um transponder reflete de volta, ao mesmo tempo, um sinal, confundindo o leitor. Diferentes padrões de protocolo de interface de ar (e diferentes sistemas próprios) utilizam diferentes técnicas para fazer com que as tags respondam ao leitor uma de cada vez. Estes envolvem algoritmos projetados para "singularizar" as tags. Uma vez que cada tag pode ser lida em milésimos de segundo, parece que todas as tags estão sendo lidas ao mesmo tempo. 

Qual é a captação de energia? 
A maioria das tags RFID passivas simplesmente refletem as ondas do leitor. Captação de energia é uma técnica na qual a energia do leitor é recolhida pela tag, armazenada de forma breve e transmitida de volta para o leitor. 

O que é um tag RFID sem chip? 
RFID sem chip é um termo genérico para sistemas que usam energia de Rádio Frequência para transmitir dados, mas não armazena um número serial em um microchip de silício no transponder. Algumas tags sem chip usam plásticos ou polímeros condutivos em vez de microchips de silício. Outras tags sem chips usam materiais que refletem de volta uma parte das ondas de rádio irradiadas para eles. Um computador faz uma fotografia instantânea das ondas transmitidas de volta e usa-as como uma impressão digital para identificar o objeto com a tag. Empresas estão experimentando a incorporação de fibras refletoras de rádio frequências em papel para evitar fotocópias não autorizadas de determinados documentos. Há tintas que refletem as ondas de rádio em determinadas frequências, permitindo que os agricultores, por exemplo, tatuem um transponder RFID sem chip em um animal para fins de identificação. 

Ouvi dizer que RFID não funciona em torno de metal e água. Isso significa que eu não posso usá-lo para rastrear latas ou produtos líquidos? 
Tags de baixa e alta frequência funcionam melhor em produtos com água e metal. Na verdade, existem aplicações nas quais tags RFID de baixa frequência são incorporadas em autopeças de metal para rastreá-las. Ondas de rádio são rebatidas no metal e são absorvidas pela água em frequências ultra-altas. O que faz rastreamento de produtos de metal, ou aqueles com alto teor de água, com tags passivas UHF desafiador. No entanto, nos últimos anos, as empresas têm desenvolvido tags especiais UHF projetadas para superar estes desafios. Há também formas de colocar tags nos produtos com conteúdo de metal ou água para garantir uma taxa de leitura confiável. 

O que é colisão de leitores? 
Um problema encontrado com sistemas RFID - principalmente em sistemas UHF de longo alcance - é que o sinal de um leitor pode interferir com o sinal de outro, onde há sobreposição de cobertura. Isso é chamado de colisão de leitores. Os leitores podem usar blindagem, mas isto complica as implantações e os torna mais caros. O padrão EPC Gen 2 inclui algo chamado "leitor denso" de modo a evitar a colisão leitor. Veja abaixo. 

O que é o modo "leitor denso"? 
Este é um modo de operação que impede que leitores compatíveis com EPC Gen 2 interferiram um com o outro, quando muitos são usados em proximidade um do outro. Leitores pulam entre os canais dentro de um espectro de frequências determinadas (nos Estados Unidos, eles podem pular entre 902 MHz e 928 MHz) e podem ser obrigados a esperar um sinal antes de usar um canal. Se "escutarem" outro leitor usando esse canal, eles vão para outro canal para evitar interferências com o leitor nesse canal. 

Quanto custa uma tag RFID hoje? 
A maioria das empresas que vendem tags RFID não cotam preços, porque o preço é baseado em volume, na quantidade de memória na etiqueta e na embalagem da tag (se é revestida de plástico ou incorporada em um rótulo, por exemplo), se a tag é ativa ou passiva e muito mais. De modo geral, as tags ativas custam de US$ 25 para cima. Tags ativas com embalagem especial de proteção, baterias de longa duração ou sensores podem custar US$ 100 ou mais. Um epc passiva de 96 bits encrustada (chip e uma antena montada em um substrato) custa de 7 a 15 centavos de dólar americano. Se a tag é incorporada em um rótulo de transferência térmica no qual as empresas podem imprimir um código de barras, o preço sobe para 15 centavos ou mais. Tags de baixa e alta frequência tendem a custar um pouco mais. 

Quanto os leitores RFID custam hoje em dia? 
Depende do tipo de leitor. Leitores ativos são geralmente adquiridos como parte de um sistema completo, com tags e software de mapeamento para determinar a localização das tags '. A maioria dos leitores UHF custam de US$ 500 a US$ 2.000, dependendo das características do dispositivo. As empresas também podem ter que comprar separadamente cada antena, juntamente com os cabos. Antenas custam cerca de US$ 200. O preço dos leitores UHF vem caindo enquanto a produção cresce com a adoção. Leitores de baixa e alta frequência se diferenciam em preço, dependendo de fatores diferentes. Um modelo de leitor de baixa frequência modelo de leitor (uma placa de circuito que pode ser colocada em outro aparelho) pode custar menos de US$ 100, enquanto um leitor independente totalmente funcional pode custar US$ 750. Módulos leitores de alta frequência custam tipicamente de US$ 200 a US$ 300. Um leitor autônomo pode custar cerca de US$ 500. 

Quanto custa um sistema RFID totalmente funcional? 
O custo depende da aplicação, do tamanho da instalação, do tipo de sistema e muitos outros fatores, por isso não é possível dar um valor aproximado. Além de custos de tags e leitor, as empresas podem optar por comprar middleware para filtrar dados de RFID. Eles provavelmente vão precisar contratar um integrador de sistemas e atualizar aplicações empresariais, tais como sistemas de gestão de armazém. Eles podem também precisar atualizar as redes dentro das instalações. E eles terão de pagar pela instalação dos leitores. Os leitores precisam não somente ser montados, eles precisam de energia elétrica e estar conectados a uma rede corporativa. Todos esses fatores são diferentes para cada implantação, dependendo da aplicação, do ambiente e assim por diante. 

Existem padrões para RFID? 
Sim. A International Organization for Standardization (ISO) tem feiro padrões RFID há mais de 20 anos. ISO 15693 e ISO 14443 são padrões de HF bem estabelecidos. O padrão EPCglobal Gen 2 tem sido adotado como um padrão global (ISO 18000-6C), e ISO 18000-7 é um padrão internacional para as tags ativas operando em 433 MHz. 

O que é EPC Gen 2? 
Gen 2 é o nome dado a abreviação de segunda geração de protocolo de interface aérea EPC da EPCglobal (a língua que as etiquetas e os leitores usam para se comunicar). Ele foi projetado para trabalhar internacionalmente e tem outras melhorias, como um modo de operação de leitor denso, o que impede os leitores de interferirem um com o outro, quando muitos são usados em proximidade um do outro. 

Qual é a diferença entre ISO e EPC? 
O Electronic Product Code é um padrão criado pela EPCglobal, concebido como um padrão global para o uso em muitas indústrias. Em julho de 2006, o protocolo EPC Gen 2 foi aprovado e adotado pela Organização Internacional de Normalização (ISO) como o padrão ISO 18000-6C. A ISO criou muitos padrões de RFID que lidam com o protocolo da interface aérea e aplicações para RFID. O EPC lida com mais do que apenas como tags e leitores se comunicam. A EPCglobal criou um conjunto de normas para reger como os dados EPC são compartilhados entre as empresas e outras organizações. 

O que é ISO 18000-6? 
ISO 18000-6 é uma norma internacional que rege a forma como tags e leitores se comunicam no espectro de UHF. Existem atualmente três versões: 18000-6A, 6B e 18000-18000-6C. Destas, 18000-6C é de longe a mais comumente usada. 

Por que o EPC Gen 2 é importante? 
O EPC Gen 2 foi projetado para trabalhar internacionalmente e tem outras melhorias que são significativas, mas o benefício real do Gen 2 é que ele funciona em qualquer lugar do mundo e grandes fabricantes de chips e tags se alinharam a ele. 

O Que é o padrão EPCIS? 
EPCIS (o Electronic Product Code Information Service) é uma especificação de uma interface padrão de acesso a informações relacionadas com EPC. Códigos eletônicos de produtos (EPC) permitem números de série únicos para cada objeto individual, permitindo às empresas monitorá-los de forma independente e coletar dados em tempo real sobre cada um, bem como armazenar essa informação e agir com ela. O EPCIS permite a parceiros da cadeia de suprimentos compartilhar e trocar informações de forma eficiente, fornecendo uma interface padrão para os parceiros comerciais. O resultado é a redução do tempo gasto com a integração, uma vez que todas as partes envolvidas podem usar a mesma interface, independentemente dos tipos de banco de dados diferentes usados para armazenar os dados. 

Por que o EPCIS é importante? 
O EPCIS fornece uma interface padrão permitindo que as empresas em diversas indústrias para realizar um rastreamento, detecção de desvio e de autenticação de produtos. Isto oferece uma alternativa de baixo custo para múltiplas interfaces específicas, sem a necessidade de implementação personalizada. A segurança é um conceito central do EPCIS, pois parceiros comerciais mantêm a propriedade de seus próprios dados, com cada parceiro movendo ou compartilhando dados sob demanda. O EPCIS mapeia aplicações corporativas existentes facilmente, e parceiros comerciais construindo suas próprias soluções podem cooperar um com o outro. Os benefícios incluem a redução fora de estoque, melhores execução de promoções, detecção de falsificação, detecção de desvio, prova eletrônica de entrega, segurança dos produtos e disponibilidade do produto. 

O Que é o Electronic Product Code? 
O Electronic Product Code (EPC) foi desenvolvido originalmente como um eventual sucessor para o código de barras. O objetivo era criar um método de baixo custo de rastrear as mercadorias usando a tecnologia RFID. O benefício de RFID é que não requer linha de visão, o que significa que os bens podem ser verificados através da embalagem e sem precisar de pessoas para digitalizar itens. Tags EPC foram projetadas para identificar cada item fabricado, em oposição a apenas o fabricante e classe de produtos, como códigos de barra fazem hoje. 

Como funciona o EPC? 
O EPC é uma sequência de números e letras, consiste em um cabeçalho e três conjuntos de partições de dados. A primeira partição identifica o fabricante. O segundo identifica o tipo de produto (unidade de armazenamento de estoque) e o terceiro é o número de série único do item. Ao separar os dados em partições, os leitores podem procurar por itens com código de um determinado fabricante ou produto. Os leitores também podem ser programados para procurar EPCs com o mesmo código de fabricante e produto, mas que têm números exclusivos em uma determinada sequência. Isto torna possível, por exemplo, para localizar rapidamente produtos que possam estar se aproximando de sua data de validade ou que precisam ser recolhidos. 

Por que a tecnologia EPC é importante? 
A tecnologia EPC pode melhorar drasticamente a eficiência na cadeia de abastecimento. A visão é criar quase perfeita visibilidade da cadeia de abastecimento, a capacidade de rastrear cada item em qualquer lugar na cadeia de suprimentos de forma segura e em tempo real. RFID pode reduzir drasticamente os erros humanos. Em vez de digitar informações em um banco de dados ou escanear o código de barras errado, os bens irão se comunicar diretamente com os sistemas de inventário. Leitores instalados em fábricas, centros de distribuição, armazéns e nas prateleiras das lojas gravarão automaticamente a circulação de mercadorias a partir da linha de produção para o consumidor. 

A tecnologia EPC é apenas para uso em produtos de grande consumo? 
A visão original era para EPC tecnologia ser utilizada em todos os tipos de produtos, não apenas produtos de consumo. Ter um sistema de numeração única tornaria mais fácil acompanhar as mercadorias não apenas dentro de uma indústria, mas em todos os setores também. A Goodyear, por exemplo, vende pneus para montadoras e para o Wal-Mart e seria melhor usar um esquema de numeração para rastrear todos os seus pneus. Mas muitas indústrias têm seus próprios sistemas de numeração, e a EPCglobal desenvolveu um "mecanismo de tradução," um sistema de software que converte EPCs em números específicos da indústria e de volta. Muitas indústrias estão se movendo em direção à adoção da tecnologia EPC, incluindo vestuário, defesa, computação, eletrônicos e produtos farmacêuticos. 

Como pode uma empresa rastrear itens usando EPCs? 
As empresas têm que criar uma rede de leitores RFID. Em um armazém, por exemplo, poderia haver leitores ao redor das portas, na plataforma de carga e em cada compartimento. Quando um palete de produtos chega, o leitor na porta da plataforma pega sua placa de licença única. Computadores procuram o que é o produto em um banco de dados, onde o ID da tag está vinculado a um produto específico, caixa, sacola ou palete. Sistemas de inventário são alertados sobre a sua chegada. Quando o palete é colocado no compartimento A, esse o leitor envia um sinal dizendo que o item 1-2345-67890 está na baía A. 

Como você sabe o que é o item 1-2345-67890? 
O EPC, por si só, não diz a você mais sobre um produto do que a placa de um carro lhe diz sobre um carro. Computadores precisam de uma maneira de associar o EPC com informações armazenadas em outros lugares sobre o item único. Para ajudar sistemas de computador a encontrar e compreender a informação sobre um produto, a EPCglobal criou o Electronic Product Code Information Service (EPCIS), que usa a Internet para permitir que as empresas procurarem informações associadas a cada item em bancos de dados seguro. 

domingo, 8 de maio de 2011

Proximity Security System

Proximity Security System
By: Craig Ross (cjr37) and Ricardo Goto (rhg22)


Introduction and Motivations:
For our final project, we designed and built (and exhaustively tested) an RFID-based proximity security system for use with Cornell Identification cards, which have been RFID-embedded since fall of 2003. The idea for this project was sort of spawned from our general interest in RFID technologies and the near-simultaneous occurance of Lab 2 (Keypad Security System) and the antiquated lock system at our fraternity house breaking.

"Old and Busted...New Hotness" -Will Smith
At the highest level, our device uses an antenna coil to power the RFID tag embedded in our Cornell ID's and read the induced response from the card. This response is then filtered and manipulated into useful data and interpreted by the Atmel Mega32 microcontroller which runs the actual security program. In addition to interactions with the ID cards, the system is in contact with an administrator computer via a serial communications link and hyperterm. The security system can store up to 20 45-bit codes which are derived from communications with each unique RFID tag. If a card is read and it is not in the code database, a red LED flashes for 3 seconds. Likewise, if the code can be found in the database, a green LED lights for 3 seconds. From hyperterm, the administrator has the power to add codes, delete codes, list all codes, "unlock" the door (the equivalent of the green LED flashing), and initialize routines which allow codes to be added to the database by gathering data from the reader itself.
Educational topics explored in this lab include (but are not limited to) passive filter design, active filter design, amplification circuits, RF antenna design, digital logic, serial communications, RFID theory, pin interrupts, timer interrupts, and soldering. In short, for this project we used elements of basically every introductory level ECE course we have taken. Since we are dealing with such a complicated topic, on the hardware side of things we tried to rely as much as we could on proven circuit designs. This would enable us to focus more on getting our system working well as a whole rather than spending countless hours debugging small parts of our project. For this, the Microchip® microID 125 KHz Reference Guide (see citations section) proved to be an invaluable resource for both theory and results.

High Level Hardware Design:
Before we start with actual circuit design, it is neccessary to understand the principals behind the technology that this project has set out to harness; passive RFID communications. Passive RFID tags work in such a way that they are actually powered by an external signal, which, in most cases is the carrier signal from the tag reader circuit. These tags are fairly simple and are comprised of merely an L-C antenna (similar to the one shown in the block diagram below) and the circuitry neccessary to modulate this carrier signal once powered on. The reader and tag communicate using magnetic coupling since their respective antennas can sense changes in magnetic field, which is observed as a change in voltage in the reader circuit.
The Cornell ID cards we use in this project were developed by HID®; specifically the HID DuoProx II cards. These are useful because they have both embedded RFID as will as a magnetic strip, while much of campus is starting to switch over to proximity entry systems, many current systems (including the dining halls) are still swipe-operated. From looking at their website, it was difficult to determine much information about the card's operation, asside from the fact that it operates at a 125 KHz carrier frequency and it could have a tag size anywhere between 26 and 128 bits long.
After many hours of research we discovered that the modulation type used in the cards is Frequency Shift Keying (FSK), one of the more common ways used in RFID. FSK modulates the signal by essencially multiplying a lower amplitude, lower frequency signal with the carrier signal, creating an AM-like effect; the lower frequency enveloping the carrier frequency. To switch between a "1" and a "0", the tag switches the modulating frequency. The two frequencies used by our cards were 12.5 KHz (125 KHz/10) and 15.625 KHz (125 KHz/8), which correspond to 1 and 0 respectively. The modulation produces an effect that looks similar to the figure below:

Figure 1: Simulation of FSK Modulation With Modulation Frequencies of 12.5 and 15.625 KHz and Carrier Frequency of 125 KHz
The job of the reader circuit is to provide the 125 KHz carrier frequency, transmit that to the tag, and detect the magnetic coupling from the tag, which should look like the figure above. In order to interpret this data, the carrier frequency must be removed, and the enveloping frequencies must be magnified into something measureable.
The block diagram/flow chart for our reader circuit can be found in the figure below:

Figure 2: Block Diagram of Our Circuit
Although each individual part of the circuit and program will be described in detail later, the general idea for circuit operation is as such: The Mega32 provides a timer-driven 125 KHz square wave for our carrier frequency. This is then sent through an RF choke, which is essentially a passive low-pass filter with steep drop-off to knock out the upper harmonics and leave us with only a sine wave. The sine wave is then amplified using an emmitter follower PNP transistor and a half bridge to maximize current. Since our resonant circuit is a series L-C circuit, maximum resonance is achieved at minimum impedance, so it is very important that we provide adequate current amplification as to not overdrive our microcontroller. To help reduce the strain (and ramp up the current more) further, the square wave output from the MCU is put through parallel inverters.
On the recieving end, the signal is first half-wave rectified, since the negative part of the signal doesn't really make a difference, and is then fed through a half-wave R-C filter to help knock out most of the 125 KHz carrier and detect the envelope signal. This signal is then bandpass filtered using a series a Twin-T active bandpass filters, and lowpass filtered with an active Butterworth filter to further decrease gain in frequencies outside of the 10-20 KHz area and increase gain of the envelope signals such that it saturates the op-amps of the filters. As a final stage the signal is put through a comparator and resistive divider to produce a nice square wave at logic levels. Some D-flip flops and a decade counter are used to extract data from the modulating square waves. Which are fed into the MCU and processed.


Hardware and Software Tradeoffs:
There are many ways to design a proximity card reader in terms of tradeoffs between hardware and software. In most cases, software is cheaper because you don't need to purchase any parts but at the same time you are costing the MCU processing time. Using more hardware will obviously increase the cost of the design but ultimately may alleviate painfully tedious optimizations that would have been necessary had you used code to replace a component or device.
One of the first tradeoffs we encountered was whether to use the Mega32 or a separate counter to generate the 125 kHz carrier frequency. The microID 125 kHz RFID System Design Guide suggested using a 14-stage binary counter to divide the clock from the crystal to 125 kHz. However, since the Mega32 has built-in hardware timers that can output to one of the pins, there was no need to use a counter.
Another tradeoff we encountered was whether to use DSP or hardware to analyze the signal on the antenna. Recall that this signal is the carrier signal and the magnetically coupled response from the card superimposed onto each other. Using DSP, we could sample at the Nyquist frequency and compute the FFT of the signal to find what frequencies are present in the response and from there decode the response. If we were to use DSP, we would have to sample at greater than 250 kHz meaning there would only be 64 cycles between samples to compute the FFT. This imposed a huge constraint on the rest of our security system so we decided to implement the most of the decoding in hardware.


Specific Circuit Elements:
Transmit Stage: RF Choke and Power Amplifier:
The circuit of Figure 3 below is an RF choke followed by a current buffer and half-bridge amplifier. The RF choke is used to filter out most, if not all of the upper harmonic frequencies found in the square wave output from the MCU, leaving the fundamental frequency, 125 KHz, as a sine wave to be amplified. The square wave generator seen in the figure below is, in actuality, the output from the MCU and a set of inverters to ramp up the current. Diodes are used in the half bridge to help reduce crossover distortion caused from differing points of either transistor in the half bridge turning on and off. In our design we used the 2N3904 and 2N3906 NPN and PNP BJT transistors from the lab since they were cheap and convenient. In order to get better amplifier gain, and thus increase read range of our circuit, we could have used power MOSFETS instead for the half-bridge, but we found the BJT's gave us a mostly acceptable level of gain, especially once the circuit was tuned.

Figure 3: Circuit Diagram for Transmition Portion of Circuit


Figure 4: Oscilloscope Reading of Transmit Stage Output
Resonant Antenna Circuit:
While this portion of our circuit is only comprised of two components, it is also arguably the most important hardware element; if it performs poorly then our security system performs poorly. Because this design was recommended for proximity solutions from the Microchip® guide, we decided to go with a series L-C resonant curcuit as opposed to one where the resistor and inductive antenna were in parallel. Because of this, at maximum resonance we also observe maximum current. In order to determine values for the inductance and capacitance needed, we used the equation: , where f is the resonant frequency (in Hertz), L is inductance (in Henries) and C is capacitance (in Farads). Since f = 125 KHz and we had plenty of 1 nF ceramic capacitors in the lab, we settled on an inductance of 1.62 mH.

Figure 5: The different Pieces of Our Circuit Before we Constructed the Final Form Factor
To construct an antenna with the neccessary inductance we used coils of laquered copper wire, since it works well and is fairly compact. In our final construction revision, we used a rectangular-shaped antenna coil since it fit well with the design. The figure above shows the coil as circular, which is what we used for most of our preliminary testing before we actually put the unit together. Both antennas operated roughly the same as each other, although the rectangular coiled one resonates more. Inductance for the rectangular coil is determined by the following equation: , where L is in microHenries, x and y are the width/length of the coil (in cm), h is the height of the coil (in cm), b is the width across the conducting part of the coil (in cm) and N is the number of turns. In our case, x=3.6cm, y=13.8 cm, h=1 cm, and we estimated b=.3 cm. Using the equation, we calculated the coil to need approximately 90 turns. It turned out this was a pretty good estimate. After constructing the coil, we proceeded to tune it by removing coils until we saw the highest resonant voltage from our carrier frequency, which was at roughly 88 turns. Oscilloscope results from this circuit, with both just the carrier frequency, and with the modulated signal from the RFID tag can be seen below.
Figure 6: The Carrier Signal in the Resonance Circuit (left), and our Modulated Carrier Signal When an RFID Tag is Placed Near the Antenna (right)

Half-Wave Rectify and Filtering:
This portion of the circuit is devoted to separating out the carrier frequency from the modulating envelope, since its really only the envelope that has the data we care about. The first stage is half-wave rectifying the signal to make things simpler and then filtering it slightly with an R-C filter. As is the norm for filtering AC signals in this manner there is some 125 KHz ripple, but choosing good values we could make the enveloping frequencies stand out from the ripple. For this we chose R=390 KOhms and C= 2.2 nF. Scope readings are shown in the figure below. Note that the peaks are the ripple, and the whole signal seems to oscillate at 15.625 KHz. You can tell this because there are 8 125 KHz ripple peaks per oscillation of the envelope. At a 12.5 KHz envelope, there would be 10 ripples per oscillation.

Figure 7: What the Signal Looks Like After the Half-Wave Rectify and First Round of Filtering
Once signal leaves this stage, it passes through a capacitor to knock out the DC offset and into the next set of filters; a pair of active Twin-T filters and an active Butterworth filter with the TL084 OpAmp as the gain element. The circuit diagram for this is in the figure below:

Figure 8: Circuit Diagram for the Filter Stage. Signal Comes in From the Right and Exits out the Butterworth on the Left
As can be seen from the Bode Plot in the figure below, the first filter mostly isolates the pass band (10-20 KHz), with roughly unity gain for all frequencies outside the pass band. The second filter further accentuates gain in the pass-band while slightly reducing the magnitude of frequencies outside the pass band. After this, the signal goes through a massive Butterworth Low-Pass filter to drastically increase gain of lower frequencies already in the pass band and virtually eliminate the higher frequencies, including the 125 KHz carrier signal.

Figure 9: Bode Plot Showing Behaviours of All Three Active Filters
Once out of the filters, the signal is then put through a TL084-based comparator and a resistive divider to generate a nice square wave at logic levels. The 12.5 KHz and 15.625 KHz frequencies come out of the filters beautifully. When no card is present, the system reports a 28.75 KHz wave which represents the highest frequency to come out of the filters with enough gain to saturate the opamps.
Figure 10: Protoboard With Our Filter Circuit (left) and 28.75 KHz idle Frequency From the Filter Output

Figure 11: Envelope Frequencies After Filtering and Reduction to Logic Levels. 12.5 KHz is on Left While 15.625 KHz is on Right
Data Creation Stage:
Technically, from the output of the comparator we should have been able to read and interpret data from the card using a timer interrupt. We quickly realized, however, that by doing this we would cripple the functionality of our system. In order to accurately measure the frequency of the incoming data stream we would realistically need to sample at 125 KHz, which means that, with a clock rate of 16 MHz we would have 128 clock cycles to compute everything before the next sampling interrupt fired. This would have been extremely difficult to implement. Looking for an alternate method to obtain data, we found a brilliant design in the Microchip reference guide, which makes use of flip-flops and a decade (Johnson) counter. This circuit can be seen in the figure below:

Figure 12: Circuit Used for Data Generation
The way this works is as follows: The comparator output serves as the clock for the first D flip-flop, which also takes logic 1 as its D value. On the rising edge of the comparator clock, Q is immediately set to 1. However, simulataneously ~Q goes low and clears the flip-flop. This creates an extremely short pulse which serves as a reset for the decade counter and clock for the second flip-flop. The decade counter is just a 1-hot counter which takes a 125 KHz clock. With every rising edge of this clock, the counter outputs the next pin to logic 1; so typical output would look like (if one were looking at output pins 0-9 of the counter) 1000000000 0100000000 00100000000 etc. However, this counter is being reset with every rising edge of the comparator output. Thus, since we've already determined that 125 KHz/10 = 12.5 KHz is to be our frequency that represents logical 1, all we have to do is check for the output on pin9 to know whether or not we see that frequency. If the system is operating at either one of the other possible frequencies, the counter will be reset before pin9 can go active. The pin9 output serves as input to the second flip-flop and also to the clock inhibitor, which keeps the 9th pin high until the counter is reset. Because of this set-up, the Q output of the second flip-flop will remain logical 1 so long as modulating frequency is 12.5 KHz and will drop down to 0 if its anything else. Theoretically, this circuit should work perfectly. However, experimentally it did not, and thus required a small modification. The 100 KOhm resistor on the first flip-flop serves to lengthen the time it takes for the ~Q signal to get to CLEAR. Since all transistors have some amount of natural capacitance, this forms an RC circuit of sorts with a set RC time constant for the signal to rise or fall. As it turns out, this time was too short for the decade counter. The original design from the reference guide specified only a 10KOhm resistor between ~Q and CLEAR. With the 10 KOhm resitor, pulse widths for the reset pulse were a mere 50 ns long, while the counter required at least 250 ns. This caused some very eratic behaviour. After many hours of debugging, we finally pinpointed the problem and replaced the resistor with the 100 KOhm resistor which increased the pulse width long enough for the counter to correctly operate. The figures below show the behaviour of the circuit when operating correctly:
Figure 13: Comparator Output with Reset Pulse (left). Comparator Output with Data Output (right)

Figure 14: A Close-Up of our Reset Pulse Reveals That it is now 350 ns; 100 ns Over the Minimum for the Decade Counter


Software Design and Program Details:
Initialize:
This function initializes the various interrupts, timers, input-output, and global variables utilized in the program. The following are all initialized or setup here:
  • Timer2 is used to toggle OC2 to generate a 125 kHz square wave.
  • Port A is the output of the digital counter/flip-flop circuit.
  • Port C is the LED output.
  • Timer0 is used to count milliseconds for keeping track of time and controlling the timing on scheduled tasks and timer0 interrupt is enabled.
  • Enable the transmitter and receiver in the USART and set the baud rate to 9600.
  • Initialize flags, counts, buffers, and other state variables.
  • External interrupt 2 is enabled and set to trigger on the rising edge.
  • Set interrupt bit.
  • Hold and prompt for the date and time before entering the while(1) loop.
USART Receive Interrupt
This interrupt handles any typed characters received from the terminal through the RS232 connection and stores it into a buffer. It also echoes the character to the terminal. Once a carriage return is detected, the receive-ready flag is set indicating that a line command has been entered by the user via the terminal.
USART Transmit Interrupt
This interrupt handles transmitting characters to the terminal. It simply loops through the transmit buffer until the last character is sent and then is ready for another transmission.
Timer0 Compare Match Interrupt
This interrupt serves as a timer to control the scheduling of different timers. It decrements the timers for timing how long the door is unlocked, timing how long a second lasts, and for checking the receive-ready flag.
External Interrupt2
This interrupt samples the data (output of the counter/flip-flop circuit). It is triggered by the rising edge of the output of the comparator. The output of the comparator is approximately a 29 kHz square wave if there is no modulation, and a 15.625 kHz or 12.5 kHz square wave if there is modulation. When the output of the comparator is 15.625 kHz the data is 0 and when the output is 12.5 kHz the data is 1. The point of this interrupt is to detect how many bits are in a 0 or 1 pulse of the data. Thus every time this interrupt fires, we increment a counter and add the sample to an array.
Main Method
In main, there are 3 major modes of operation. The mode of operation at startup is normal; however the modes can be changed through the terminal.
In normal mode, the reader waits for External Interrupt2 to finish reading a response from the card. It does this in about a thousand executions of the interrupt. When enough bits have been sampled, we turn off the External Interrupt2. When first analyzing the response from the card, we noticed periodicity every 540 bits. Thus, to guarantee that our sample window captures a full continuous 540 bit cycle, we sampled 1080 bits before turning off the interrupt. An example of a 1080 bit response looked something like this:
001111100000011111000000111111000000000000111111111100000011111000000000000111111000000111110000001111100000011111100000 11111100000011111111110000000000001111110000011111100000011111111110000000000001111110000011111111111000000111110000001111
00000000000011111100000011111111110000000000001111110000011111100000000000000000011111111111111110000011111100000011111000000 1111100000011111100000111111000000111110000001111111111000000000000111111111110000001111100000000000011111100000111111000000
111110000001111111111000000111111000001111110000001111100000011111000000111111000000000000111111111100000011111000000000000
1111110000001111100000011111000000111111000001111110000001111111111000000000000111111000001111110000001111111111000000000000
11111100000111111111110000001111100000011111000000000000111111000000111111111100000000000011111100000111111000000000000000000 11111111111111110000011111100000011111000000111110000001111110000011111100000011111000000111111111100000000000011111111111000000
1111100000000000011111100000111111000000111110000001111111111000000111111000001111110000
There is a long sequence of 1's and 0's that stand out; we used these as references to identify the start and end of the 540 bit response.  To extract the 540 bit response we wrote a function to detect a sequence of 15 to 18 1's. This function loops until it finds the start sequence and stores it in a global variable and calculates the end sequence.
There is also something noticeable about the 540 bit sequence. There are 1's and 0's in groups of 5, 6, 10, 11, or 12 excluding the start and stop sequence. Since 10, 11, and 12 can be made from combinations of 5 and 6, we hypothesized that maybe these longer groups are combinations of two groups of 5 or 6. With this in mind, we wondered whether a group of 5 or 6 bits possibly represents a single bit. This would make sense because the card cannot perfectly transition from one modulated frequency to another without some transition. Thus a group of 10, 11, or 12 represents two bits. Thus the reduced (90 bit) version of the 540 bit response excluding the start and stop sequence is extracted by detecting sequences of bits and replacing them with a single or a double bit:
010101010101011001101001010101101010101010011010010101010101100101011001011010100101100101
From this code, it is fairly obvious that the reduced sequence is encoded in Manchester code. If you split up the 90 bit response into pairs of bits, there are transitions within each pair:
01 01 01 01 01 01 01 10 01 10 10 01 01 01 01 10 10 10 10 10 10 01 10 10 01 01 01 01 01 01 10 01 01 01 10 01 01 10 10 10 01 01 10 01 01
A transition from low to high corresponds to a 1 and a transition from high to low corresponds to a 0. Since two bits correspond to a single bit, the Manchester decoded response has half the bandwidth and is thus only 45 bits long:
111111101001111000000100111111011101100011011
We believe this code is the raw data stored on the card. We have not been able to decode this further to find it's relation to Cornell student ID number but it is not necessary since this number is unique to each card. After decoding the initial 540 bit response to this 45 bit code, we store this data and sampled again. To prevent false reads, we keep sampling until we successfully read 3 consecutive identical codes. If we get 3 consecutive identical codes, we compare this code to the code bank (where all the authorized codes are stored). The code bank is stored in EEPROM due to limited space in SRAM. If the 3 consecutive identical codes match a code in the code bank, a green LED is lit for 3 seconds to signify that the door is unlocked. If the code does not match the code bank, a red LED is lit to signify that the door is not opened and that the code is not authorized. A statement is also printed to the administrative terminal providing the card code, whether the card was accepted, and the time at which the event occurred.
The other mode is called remote operation. In this mode, the admin has a choice of remotely adding a code to a specific code bank position or remotely adding any number of codes (bound between 1 and 20 inclusive). When adding a code to a specific code bank position, we turn on External Interrupt2 and read the card response. Just like in normal mode, we find the start code, reduce the sequence, and Manchester decode the sequence. We do this until we read 5 consecutive identical codes and then store it into the specified position in the code bank.
When adding a specific quantity of codes, we first search through the status of the code bank and find the first unused position. Then we go into remote add by position mode and we add the code at the first unused position. We do this until either the specified quantity of codes are stored or until the code bank is full.
After either of these modes finishes executing, the reader goes back to its normal mode, but now with the new stored codes in the code bank.
The end of the main loop serves as a scheduler that checks the timers for certain tasks and executes the task. It executes the function to check the receive-ready flag, turns off the LED's after 3 seconds, and executes the counter that keeps track of time and date.
Check Receive Ready
The last major part of the security system is the administrative interface through the terminal. This function checks to se if a command has been received from the admin. It checks the command and executes the corresponding actions. The commands that are implemented are:
  • a <pos> <code>        – add a code
  • l                                   – list all codes
  • d <pos>                      – delete a code
  • u                                  – unlock door
  • rp <pos>                    – remote add (positional)
  • ra <amt>                   – remote add (amount)
Helper Functions
The rest of the functions are simple, self-explanatory, helper functions that accomplish simple tasks such as keeping track of the time and date, storing codes into the code bank, verifying that a code matches a code in the code bank, comparing two codes, copying a code, and completing or starting a receive or transmit using the USART.


Results of Design:
Certain aspects of the proximity security system performed equal to what we initially expected at the start of the project. The maximum range of the proximity card reader is about 1.5 to 2.0 inches from the antenna coil. According to the microID 125 kHz RFID System Design Guide, different dimensions of reader and tag coils will affect the maximum read distance. For example, a 3 x 6 inch reader antenna and a 0.5 inch diameter card antenna will have a maximum read distance of about 1.5 inches. For a 1.0 inch diameter card antenna the read distance increases to 4 inches. Since we do not know the exact dimensions of the antenna inside of our Cornell University identification cards, we do not know whether we are performing below or above ideal expectations, however, the current read range is sufficient for our purposes.
The approximate read time for most cards is about 1 to 3 seconds once the card is within the maximum read distance. The latency is due to the redundant code check. Once the card is in range and we start receiving data, we read the data 3 consecutive times. If the code ever differs, then we try to read another 3 consecutive times. Thus, if the card is near the maximum range or has poor modulation consistency then it will take longer to read.
The proximity security system is fairly accurate as we expected. There are little to no false positives, although sometimes there are false negatives. If the card is held around the maximum range, we occasionally receive incorrect data. However, if the card is within an inch of the coil, the data can be read with virtually no errors.
Although important, safety was a minor concern when designing a proximity security system. Since there is no contact between the user and the reader, there is no danger of harming the individual through direct contact. The 125 kHz signal transmitted from the reader is also harmless but may cause interference with other devices operating at the same frequency. From our time in lab however, we noticed almost no interference from other people's designs.
Our goal for this project was to build a security system that used our current Cornell University identification cards. Thus by completing that goal, we believe we have built a fully operational concept/prototype of an ideal proximity security system for our fraternity house. This project is very usable by anyone wanting a hands-free front door security system while utilizing a card that is necessary to have with you anyway.


Ethical Considerations and FCC Regulations
Since neither my partner nor I has taken a class in RFID design, we both obviously had very little to no experience in building a proximity security system. Thus, a majority of our knowledge that we now possess from completing this project is from other sources such as project web pages, specification sheets, and application notes.  Since we are citing that we used these sources, we are adhering to Code of Ethics #7:  “…and to credit properly the contribution of others.” This is a no-brainer since failing to cite sources can be interpreted as plagiarism.
Often times throughout the semester, we sought input from Professor Land , the TA's, and other classmates about our project. At the same time, we also offered our opinions on other groups' projects with the intent of helping design the best they are capable of. Similarly, there was never any malicious intent towards any of our fellow classmates.
There weren't many public risk or safety considerations since our design was fairly straightforward and known to be perfectly safe since these systems have been in the public for several years.
All of the other articles of the Code of Ethics we really did not even have to consider and we adhered to them entirely.
The FCC regulations state that intentional, unintentional, or incidental radiators can be operated without an individual license which includes electromagnetic energy at any frequency in the radio spectrum between 9 kHz and 3 GHz. Also, the FCC states that the RFID system must be constructed with good engineering design and manufacturing practice. The system must not cause harmful interference while at the same time complying with the limitations listed in part 15 of the FCC regulations.

Figure 15: Our ID Cards Posing With the RFID Reader


Conclusion:
All in all, we consider this project to be a success. While we were not able to discern the method to translate ones actual Cornell ID number into an RFID tag, we were still able to wirelessly extract the code and process it for meaningful use. It was a particularly rewarding experience; especially since we had a large amount of uncertainty going into the project; mostly due to the fact that we were dealing with cards which were manufactured to largely unknown specifications. Through much research and testing, we were able to develop a system which not only met our preliminary goals, but even met some of our more ambitious goals, such as remote administration for adding codes to the code database.
Through many of the stages of our design, there were two websites in particular which provided the neccessary information for us to figure out the best way to proceed. These were the Microchip® microID 125 KHz Reference Guide (especially their 125 KHz reader reference design), and Jonathan Westhues's website about Prox cards. In fact, brief email correspondance with him led us to finding the 125 KHz Reference Guide!
This project was mostly a test of what we could acheive utilizing as many resources as we could from Atmel. However, for this were to be a truly useful system in the real world, most of the code keeping/checking would have to be moved offboard onto the administrator computer, which has infinitely more computing power and memory. While our current design could certainly be used in the arena of which it was conceived (with a more protective housing and an actual locking mechanism instead of LED's, of course) we found that at the very least, we would have to get an Atmel MCU with more memory than the Mega32. As a proof of concept this works extremely well, but in practice a little more is needed. Another interesting tweak to the current design, could be the addition of a wireless transmittion interface to the adminstrative computer, allowing the reader to acheive more spacial independance from the base.


Figure 16: Ricardo Testing out the System and Doing Some Serious MultiTasking. We Don't Mess Around
.

Appendix A: Budget Considerations
Most of our design was comprised of small IC's and discrete components. Thus we were easily able to stay within our $50 budget. A complete listing is below. For links to the neccessary data-sheets please click the links on the respective component.
Component Price
Mega32 $8.00
Max233CPP+RS232 $8.00
Mega32 Protoboard $5.00
Soldier Board $2.50
CD4017 Decade Counter $0.39
74HC74 Hex Inverter $0.30
LM78M12Ct 12V Voltage Regulator $1.72
MM74HC04N D Flip-Flop $0.54
TL084 Quad Op-Amp $0.76
78F102J RF Choke $0.30
2N3906 PNP Transistor (2x) $1.72
2N3904 NPN Transistor $0.86
Misc Discrete Components (wire, resistors, capacitors) ~$10
Power Supply $5.00
Reader Housing (wood platform and 3" screws) $2.00
Total $47.09


Appendix B: Final Circuit Schematic

Appendix C: Commented Code Listing

Appendix D: Citations and References

Appendix E: Work Breakdown
Craig Ross
Simulation of hardware in Multisim
Soldering Protoboard
Constructing and soldering transmit stage
Code for different modes of reader operation and admin interface
Website Compilation
Ricardo Goto
Constructing and soldering Half-Wave Rectifier
Constructing and soldering flip-flop/counter circuit
Devising an algorithm to interpret the 540 bit response
Code for sampling the data and decoding
Both
RFID research
Soldering the filter stage
Determined the encoding scheme of the Cornell ID
Writing for website